

INHALTSVERZEICHNIS

Inhaltsverzeichnis

1 Allgemeine Informationen	2
1.1 Einleitung	2
1.2 Gesundheits- und Sicherheitshinweise	3
1.3 Warnhinweise	4
1.4 Anwender und Bedienungsanforderungen	4
1.5 Bestimmungsgemäße Verwendung	4
1.6 Entsorgungshinweise	5
1.7 Zertifikate und Zulassungen	5
2 Einführung	6
2.1 Produktidentifizierung	6
2.2 Lieferumfang	7
2.3 Messprinzip und -aufbau	7
3 Inbetriebnahme	8
3.1 Elektrische Installation	8
3.1.1 Festes Kabel mit M12 Industriestecker	8
3.2 Schnittstellen	8
3.2.1 Serielle Schnittstelle	8
4 Anwendung	9
4.1 Normalbetrieb	9
4.2 Bypass-Installation	9
4.3 Halterohr-Installation	10
4.4 Lagerung	10
5 Kalibrierung	11
5.1 pH-Kalibrierung	11
5.2 Messeigenschaften	13
5.2.1 Einflüsse auf die Messung	13
5.2.2 Temperaturkompensation	13

5 Störung und Wartung	14
5.1 Reinigung und Pflege	14
5.2 Wartung und Prüfung	14
5.2.1 Temperatur Kalibrierung	15
5.2.2 Austausch des Sensors	15
5.3 Rücksendung	15
7 Technische Daten	16
7.1 Technische Spezifikationen	16
7.2 Äußere Abmessungen	17
3 Zubehör	18
3.1 TriBox3	18
3.2 TriBox mini	18
3.3 Durchflusszelle für eCHEM Sensoren	19
3.4 pH-Pufferset	19
9 Garantie	20
10 Kundendienst	20
I1 Kontakt	21
12 Stichwortverzeichnis	22
Anhang	24

1

1 Allgemeine Informationen

1.1 Einleitung

Willkommen bei TriOS.

Wir freuen uns, dass Sie sich für unseren pH Sensor TpH entschieden haben.

Der TpH basiert auf dem elektrochemischen Messverfahren mit einer Messelektrode und einer Referenzelektrode. Vorgenommene Kalibrierungen werden von diesem intelligenten Sensor intern gespeichert. Dies ermöglicht ein "Plug-and-Play" System ohne Rekalibrierung bei Wechsel des Standortes oder Messumformers.

In diesem Handbuch finden Sie sämtliche Informationen zum pH-Sensor, die Sie zur Inbetriebnahme benötigen. Technische Spezifikationen sowie Nachweisgrenzen und Abmessungen finden Sie unter Kapitel 7.

Bitte beachten Sie, dass der Nutzer die Verantwortung zur Einhaltung von regionalen und staatlichen Vorschriften für die Installation von elektronischen Geräten trägt. Jeglicher Schaden, der durch falsche Anwendung oder unprofessionelle Installation hervorgerufen wurde, wird nicht von der Garantie abgedeckt. Alle von TriOS Mess- und Datentechnik GmbH gelieferten Sensoren und Zubehörteile müssen entsprechend der Vorgaben der TriOS Mess- und Datentechnik GmbH installiert und betrieben werden. Alle Teile wurden nach internationalen Standards für elektronische Instrumente entworfen und geprüft. Das Gerät erfüllt die internationalen Standards zur elektromagnetischen Verträglichkeit. Bitte benutzen Sie nur original TriOS Zubehör und Kabel für einen reibungslosen und professionellen Einsatz der Geräte.

Lesen Sie dieses Handbuch vor dem Gebrauch des Gerätes aufmerksam durch und bewahren Sie dieses Handbuch für eine spätere Verwendung auf. Vergewissern Sie sich vor Inbetriebnahme des Sensors, dass Sie die im Folgenden beschriebenen Sicherheitsvorkehrungen gelesen und verstanden haben. Achten Sie stets darauf, dass der Sensor ordnungsgemäß bedient wird. Die auf den folgenden Seiten beschriebenen Sicherheitsvorkehrungen sollen die problemlose und korrekte Bedienung des Gerätes und der dazugehörigen Zusatzgeräte ermöglichen und verhindern, dass Sie selbst, andere Personen oder Geräte zu Schaden kommen.

HINWEIS

Sollten Übersetzungen gegenüber dem deutschen Originaltext abweichen, dann ist die deutsche Version verbindlich.

Urheberrechtshinweis

Alle Inhalte dieses Handbuchs, insbesondere Texte, Fotografien und Grafiken, sind urheberrechtlich geschützt. Das Urheberrecht liegt, soweit nicht ausdrücklich anders gekennzeichnet, bei der TriOS Mess- und Datentechnik GmbH. Personen die gegen das Urheberrecht verstoßen, machen sich gem. § 106 ff Urheberrechtsgesetz strafbar, und werden zudem kostenpflichtig abgemahnt und müssen Schadensersatz leisten.

TpH // Allgemeine Informationen

1.2 Gesundheits- und Sicherheitshinweise

Dieses Handbuch enthält wichtige Informationen über Gesundheitsschutz und Sicherheitsregeln. Diese Informationen sind nach den internationalen Vorgaben der ANSI Z535.6 ("Product safety information in product manuals, instructions and other collateral materials") gekennzeichnet und müssen unbedingt befolgt werden. Unterschieden werden folgende Kategorien:

Gefahrenhinweis / Wird zu schweren Verletzungen oder Tod führen

Warnhinweis / Kann zu schweren Verletzungen oder Tod führen

Vorsichtsgebot / Kann zu mittelschweren Verletzungen führen

Kann zu Sachschäden führen

Tipp / Nützliche Information

Elektromagnetische Wellen

Geräte, die starke elektromagnetische Wellen ausstrahlen, können die Messdaten beeinflussen oder zu einer Fehlfunktion des Sensors führen. Vermeiden Sie den Betrieb der folgenden Geräte mit dem TriOS Sensor in einem Raum: Mobiltelefone, schnurlose Telefone, Sende-/Empfangsgeräte oder andere elektrische Geräte, die elektromagnetische Wellen erzeugen.

Reagenzien

Befolgen Sie bei der Verwendung von Reagenzien die Sicherheits- und Betriebsanweisungen des Herstellers. Beachten Sie die gültige Gefahrstoffverordnung für Reagenzien (GefStoffV)!

Biologische Sicherheit

Möglicherweise können flüssige Abfälle biologisch gefährlich sein. Daher sollten Sie immer Handschuhe beim Umgang mit derartigen Materialien tragen. Beachten Sie die aktuell gültige Biostoffverordnung (BioStoffV)!

Abfall

Beim Umgang mit flüssigem Abfall müssen die Regelungen für Wasserverschmutzung, Entwässerung und Abfallbeseitigung eingehalten werden.

Allgemeine Informationen // TpH

1.3 Warnhinweise

- Dieser Sensor ist für den Einsatz in Industrie und Wissenschaft entwickelt. Er sollte nur zur Messung von wässrigen Lösungen, beispielsweise Prozessabwasser, Flusswasser oder Meerwasser verwendet werden.
- Die Materialbeständigkeit sollte für jeden Einsatz geprüft werden.
- Schneiden, beschädigen sowie ändern Sie nicht das Kabel. Stellen Sie sicher, dass sich keine schweren Gegenstände auf dem Kabel befinden und dass das Kabel nicht einknickt. Stellen Sie sicher, dass das Kabel nicht in der Nähe von heißen Oberflächen verläuft.
- Wenn das Sensorkabel beschädigt ist, muss es vom Kundenservice der TriOS Mess- und Datentechnik GmbH durch ein Originalteil ersetzt werden.
- Stoppen Sie den Betrieb des Sensors bei übermäßiger Wärmeentwicklung (d.h. mehr als handwarm). Schalten
 Sie den Sensor sofort aus und entfernen Sie das Kabel von der Stromversorgung. Bitte wenden Sie sich an Ihren
 Händler oder den TriOS Kundenservice.
- Versuchen Sie niemals einen Teil des Sensors zu zerlegen oder zu ändern, wenn es nicht ausdrücklich in diesem Handbuch beschrieben ist. Inspektionen, Veränderungen und Reparaturen dürfen nur vom Gerätehändler oder den von TriOS autorisierten und qualifizierten Fachleuten durchgeführt werden.

Geräte von TriOS Mess- und Datentechnik GmbH entsprechen den höchsten Sicherheitsstandards. Reparaturen der Geräte (die den Austausch der Anschlussleitung umfassen) müssen von TriOS Mess- und Datentechnik GmbH oder einer autorisierten TriOS Werkstatt durchgeführt werden. Fehlerhafte, unsachgemäße Reparaturen können zu Unfällen und Verletzungen führen.

TriOS übernimmt keine Garantie für die Plausibilität der Messwerte. Der Benutzer ist stets selbst verantwortlich für die Überwachung und Interpretation der Messwerte.

1.4 Anwender- und Bedienungsanforderungen

Der TpH Sensor wurde für den Einsatz in Industrie und Wissenschaft entwickelt. Zielgruppe für die Bedienung des TpH Sensors ist technisch versiertes Fachpersonal in Betrieben, Kläranlagen, Wasserwerken und Instituten. Die Anwendung erfordert häufig den Umgang mit Gefahrstoffen. Wir setzen voraus, dass das Bedienpersonal aufgrund seiner beruflichen Ausbildung und Erfahrung im Umgang mit gefährlichen Stoffen vertraut ist. Das Bedienpersonal muss insbesondere fähig sein, die Sicherheitskennzeichnung und Sicherheitshinweise auf den Verpackungen und in den Packungsbeilagen der Testsätze richtig zu verstehen und umzusetzen.

1.5 Bestimmungsgemäße Verwendung

Der Verwendungszweck des TpH Sensors besteht ausschließlich in der Durchführung von Messungen von pH-Werten in wässrigen Lösungen, wie in diesem Handbuch beschrieben. Diesbezüglich ist der TpH Sensor ein Tauchsensor, der unter Wasser oder in Verbindung mit Durchflusszellen verwendet wird. Bitte beachten Sie die technischen Daten der Zubehörteile. Jede andere Verwendung gilt als nicht bestimmungsgemäß.

TpH // Allgemeine Informationen

Der kompakte und robuste Sensor ist insbesondere für folgende Anwendungsgebiete gut geeignet:

- Industrielle und kommunale Kläranlagen
- Abwasserwirtschaft
- · Überwachung von Oberflächengewässern
- · Aquakulturen und Fischzucht
- · Trinkwasserüberwachung

Die Verwendung in anderen Medien kann zu Beschädigungen des Sensors führen. Für den Einsatz des TpH Sensors in anderen Medien, als die hier angegebenen, wenden Sie sich bitte an den Kundendienst von TriOS Mess- und Datentechnik GmbH (support@trios.de).

Nach derzeitigen wissenschaftlichen Erkenntnissen ist das Gerät sicher im Gebrauch, wenn es entsprechend der Anweisungen dieser Bedienungsanleitung gehandhabt wird.

1.6 Entsorgungshinweise

Am Ende der Lebens- bzw. Nutzungsdauer kann das Gerät und dessen Zubehör zur umweltgerechten Entsorgung gebührenpflichtig an den Hersteller (Anschrift s. u.) zurückgegeben werden. Die vorausgehende professionelle Dekontaminierung muss durch eine Bescheinigung nachgewiesen werden. Bitte kontaktieren Sie uns, bevor Sie das Gerät zurücksenden, um weitere Details zu erfahren.

Anschrift des Herstellers:

TriOS Mess- und Datentechnik GmbH Bürgermeister-Brötje-Str. 25 26180 Rastede Deutschland

Telefon: +49 (0) 4402 69670 - 0

Fax: +49 (0) 4402 69670 - 20

1.7 Zertifikate und Zulassungen

Das Produkt erfüllt sämtliche Anforderungen der harmonisierten europäischen Normen. Es erfüllt somit die gesetzlichen Vorgaben der EG-Richtlinien. Die TriOS Mess- und Datentechnik GmbH bestätigt die erfolgreiche Prüfung des Produkts durch die Anbringung des CE-Zeichens (siehe Anhang).

2 Einführung

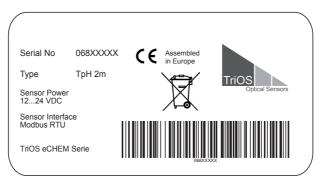
Der TPH basiert auf dem elektrochemischen Messverfahren mit einer Messelektrode und einer Referenzelektrode. Vorgenommene Kalibrierungen werden von diesem intelligenten Sensor intern gespeichert. Dies ermöglicht ein "Plug-and-Play" System ohne Rekalibrierung bei Wechsel des Standortes oder Messumformers.

Zuverlässigkeit durch integrierten vergossenen Vorverstärker

Die gekapselte Bauweise schützt den integrierten Vorverstärker des Sensors vor Nässe und Feuchtigkeit, damit der Sensor zuverlässig funktioniert. Der Vorverstärker erzeugt ein starkes Signal, sodass der Sensor sich in einer Entfernung von bis zu 300 m vom Controller befinden kann.

2.1 Produktidentifizierung

Alle Produkte der TriOS Mess- und Datentechnik GmbH werden mit einem Produktetikett versehen, auf dem deutlich die Produktbezeichnung abgebildet ist.


Zudem befindet sich auf dem Sensor ein Typenschild mit folgenden Angaben, anhand derer Sie das Produkt eindeutig identifizieren können:

Seriennummer

Produkttyp

Stromversorgung

Schnittstelle

Das Typenschild enthält außerdem den Produkt-Strichcode, das Logo der TriOS Mess- und Datentechnik GmbH und das CE- Gütezeichen.

Bitte beachten Sie, dass die hier angegebenen Spezifikationen nur zur Veranschaulichung dienen und ggf. je nach Ausführung des Produktes abweichen.

2.2 Lieferumfang

Die Lieferung enthält folgende Komponenten:

Sensor

Bedienungsanleitung

Zubehör (falls zutreffend)

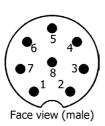
Bewahren Sie die Originalverpackung des Geräts für eine mögliche Rücksendung zu Wartungs- oder Reparaturzwecken auf.

2.3 Messprinzip und -aufbau

^{*} Polyethylen mit hoher Dichte.

3 Inbetriebnahme

Dieses Kapitel behandelt die Inbetriebnahme des Sensors. Achten Sie besonders auf diesen Abschnitt und befolgen Sie die Sicherheitsvorkehrungen, um den Sensor vor Schäden und Sie selbst vor Verletzungen zu schützen.


Bevor der Sensor in Betrieb genommen wird, ist darauf zu achten, dass er sicher befestigt ist und alle Anschlüsse richtig angeschlossen sind.

3.1 Flektrische Installation

HINWEIS

Der Sensor kann mit 12...24 VDC betrieben werden.

3.1.1 Festes Kabel mit M12-Industriestecker

- 1. RS-485 A
- 2. RS-485 B
- 3. nicht belegt
- 4. nicht belegt
- 5. nicht belegt
- 6. nicht belegt
- 7. Ground (Power + Ser. Interface)
- 8. Power 12...24 VDC

Der Sensor ist bereit für die Inbetriebnahme sobald die Montage von Zubehörteilen abgeschlossen ist, er mit Ihrem Kontrollgerät verbunden und die Konfigurierung abgeschlossen ist.

HINWEIS

Stellen Sie die korrekte Polarität der Versorgungsspannung sicher, da sonst der Sensor beschädigt werden kann.

3.2 Schnittstelle

3.2.1 Serielle Schnittstelle

Die serielle Schnittstelle des Sensors ist RS-485 (9600/8-N-1).

Bei RS-485 sind Spannungen von –5 V bis +5 V gegenüber Ground möglich. RS-485 verwendet ein differenzielles Signal, wobei auf die B-Leitung das vorzeichennegierte Potential der A-Leitung gelegt wird. Entscheidend ist die Differenz A-B, wodurch die Übertragung weitestgehend robust gegenüber einwirkender Störsignale ist.

Das verwendete Protokoll ist Modbus RTU. Eine detaillierte Beschreibung des Modbus RTU Protokolls für TpH finden Sie im Anhang.

4 Anwendung

Der TpH Sensor kann mit allen TriOS-Controllern betrieben werden. Hinweise für die korrekte Installation finden Sie im jeweiligen Handbuch des Controllers.

4.1 Normalbetrieb

Der Sensor ist bereit für die Inbetriebnahme sobald die Montage von Zubehörteilen abgeschlossen ist, er mit Ihrem Kontrollgerät verbunden und die Konfigurierung abgeschlossen ist.

Entfernen Sie die schwarze Schutzkappe indem Sie den Sensor senkrecht nach unten halten und die Kappe abdrehen. Der Sensor wird mit gefüllter Schutzkappe ausgeliefert, die eine Lösung von pH4-Puffer und Kaliumchlorid enthält. Daher muss der Sensor nicht aktiviert werden, damit er optimale Messwerte erzielen kann. Bitte beachten Sie die minimale Eintauchtiefe bis zum Ring.

HINWEIS

Sollte der Sensor trocken sein, muss er zunächst 24 Stunden in pH4-Puffer konditioniert werden.

Der Sensor wird nun in das Messmedium eingetaucht. Dabei sollte der schwarze Sensorkopf vollständig vom Medium umgeben sein. Andernfalls kann es zu Messschwankungen kommen.

Für eine Messung müssen zunächst alle Luftbläschen, die sich unter der Membran befinden, durch leichtes Schütteln beseitigt werden.

Sobald der Sensor an die Stromversorgung angeschlossen ist, beginnt er zu Messen. Dies ist optisch durch das grüne Leuchten im oberen Sensorbereich zu erkennen. Um stabile und sichere Messwerte zu erhalten, warten Sie nach der Einführung des Sensors in die Messumgebung bitte die Temperaturstabilisierung ab.

Der TpH Sensor sollte in regelmäßigen Abständen kalibriert werden. Die Abstände sind dabei abhängig von der jeweiligen Anwendung. Misst der TpH im stark alkalisch Bereich sollten die Kalibrierintervalle möglichst kurz gewählt werden. Informationen zur Kalibrierung entnehmen Sie Kapitel 5.

Die TpH gelten als Verbrauchsartikel und haben daher eine begrenzte Lebensdauer, abhängig von der Anwendung des Benutzers. Unter normalen Bedingungen würde eine typische Lebensdauer etwa ein Jahr betragen. Durch regelmäßige Reinigung lässt sich die Lebensdauer des TpH verlängern.

4.2 Bypass-Installation

Um den Sensor in eine Bypass-Installation zu integrieren, gibt es eine passende TriOS Durchflusszelle. Diese ist nach einem modularen System konstruiert und ermöglicht es, das System beliebig anzupassen oder zu erweitern.

4.3 Halterohr-Installation

Zum Einbau in bestehende Rohrsysteme bietet TriOS zwei Adapterstücke für den TpH Sensor an:

- NPT1 Adapter ZM46 (inkl. Verschlussmutter ZM13)
- G1 Adapter ZM41 (inkl. Verschlussmutter ZM13)

Aufbauschema

- Das Sensorkabel von der Seite durch den Adapter führen, auf die später die Schraubkappe aufgeschraubt wird (kurzes Gewinde).
- Das komplette Kabel durchziehen und den Sensor so weit es geht (bis zum Führungshindernis) in den Adapter schieben.
- 3. Den Sensor mit der Befestigungskappe fixieren.
- 4. Der Sensor kann nun samt Adapter in das Halterohr installiert werden.

4.4 Lagerung

Den Sensor niemals trocken lagern. Die Schutzkappe immer aufbewahren und für die Lagerung in einer Lösung aus pH4 Puffer und Kaliumchlorid oder einer 3 molaren KCI-Lösung wiederverwenden.

HINWEIS

TpH Sensor niemals trocken lagern.

Sollte ein Sensor bzw. die Elektrode des Sensors doch trocken gefallen sein, so muss sich die Quellschicht auf der Elektrode neu ausbilden. Dafür muss der Sensor in 3 molarer KCI-Lösung für mehrere Stunden (>12h) getaucht sein.

HINWEIS

TpH Sensor niemals in destilliertem Wasser lagern!

5 Kalibrierung

Länger nicht genutzte oder neue TpH Sensoren sollten vor der Messung kalibriert werden. Zudem sollte die Kalibrierung in regelmäßigen Abständen wiederholt werden. Die Abstände der Kalibrierungen sind dabei von der Art der Anwendung abhängig. Um die Abstände zu ermitteln sind Überprüfungen mit Standardlösungen empfohlen. TriOS bietet passend abgefüllte Pufferlösungen pH4 und pH7 an (siehe Kapitel 8).

Die Kalibrierung ist sowohl an den Controllern (siehe Kapitel 8) als auch über Modbus möglich. Vorgenommene Kalibrierungen werden von diesem intelligenten Sensor intern gespeichert. So ist immer die aktuelle Kalibrierung vorhanden.

5.1 pH-Kalibrierung

Mit der Kalibrierung werden der Nullwert (pH7) und die Steigung (pH4) kalibriert. Wählen Sie für die Kalibrierung pH-Pufferlösungen mit einer Genauigkeit von +/- 0,01pH und beachten Sie die Temperatur. Bei jeder Kalibrierung sind frische bzw. neu angesetzte Lösungen zu verwenden! TriOS bietet ein für den TpH ideal abgestimmtes Set von pH-Pufferlösungen mit Sensorhalter für 6 Kalibrierungen an.

Vorgehensweise:

- Überprüfen Sie die Temperatur der Pufferlösung vor der Kalibrierung, da die Lösungen temperaturabhängig sind (siehe Kapitel 8).
- Sollte die mit dem Sensor gemessene Temperatur mehr als 1°C von der mit einem Referenzthermometer gemessenen
 Temperatur abweichen, muss der Temperaturfühler des Sensors kalibriert werden (s. 6.2.1).
- Spülen Sie den Sensor mit destilliertem Wasser ab.

HINWEIS

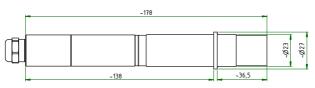
Die Elektrode darf nicht abgewischt werden.

 Tauchen Sie den TpH in pH7-Pufferlösung, der Sensorkopf (schwarz) sollte möglichst vollständig eingetaucht sein (siehe Abbildungen unten, für die Eintauchtiefe im pH-Pufferbecher ist die rote Linie zu beachten). Andernfalls kann es zu Messschwankungen kommen.

HINWEIS

Der Sensor darf in der Pufferlösung nicht gerührt werden .

Kalibrierung // TpH


- Tauchen Sie den Sensor langsam in den Becher ein und bewegen Sie ihn leicht hin und her, sodass die Membran mit der Pufferlösung benetzt ist.
- Lassen Sie den Sensor möglichst lange warmlaufen (mindestens 5 Minuten) und kalibrieren Sie nun auf pH7. Beachten
 Sie dabei die Temperatur!

HINWEIS

Der pH-Wert ist temperaturabhängig!

- Spülen Sie den Sensor erneut mit destilliertem Wasser ab.
- Tauchen Sie den TpH in pH4-Pufferlösung (oder ggf. in pH10-Pufferlösung), der Sensorkopf (schwarz) sollte vollständig eingetaucht sein (siehe Abbildungen auf der nächsten Seite, für die Eintauchtiefe im pH-Pufferbecher ist die rote Linie zu beachten). Andernfalls kann es zu Messschwankungen kommen.
- Lassen Sie den Sensor möglichst lange warmlaufen (mindestens 5 Minuten) und kalibrieren Sie nun auf pH4 (bzw. pH10). Beachten Sie dabei die Temperatur!
- Spülen Sie den Sensor mit destilliertem Wasser ab.
- Sie können nun mit Ihren Messungen beginnen.
- Die Pufferlösungen sind nach Gebrauch zu entsorgen.

Optimale Eintauchtiefe in der Anwendung mit TriOS pH-Pufferlösungen

5.2 Messeigenschaften

5.2.1 Einflüsse auf die Messung

Die pH-Messung hängt von den folgenden Parametern ab:

- Die Temperatur des Messmediums hat auch einen Einfluss auf die Alterung der Elektrode.
- Eintauchtiefe beachten: eine zu geringe Eintauchtiefe kann zu schwankenden Messwerten führen.
- Luftblasen an der Sensorik können Messfehler verursachen.
- Alkalifehler: bei pH-Werten über pH12 kann es durch Alkaliionen (Li⁺, Na⁺) zur Anzeige niedrigerer pH-Werte kommen, da die Alkaliionen zusätzlich zu den H⁺-lonen erfasst werden.
- Strömung kann den Messwert beeinflussen.

5.2.2 Temperaturkompensation

Die Temperaturkompensation wird automatisch durch den integrierten Temperatursensor (Pt1000) durchgeführt.

6 Störung und Wartung

6.1 Reinigung und Pflege

Der Sensor erfordert nur einen minimalen Wartungsaufwand. In Anwendungen, welche stärkere Verschmutzungen am Sensor verursachen, sollte der Sensor öfter gewartet werden.

HINWEIS

Bauen Sie den Sensor für Reinigungs- und Wartungszwecke nicht auseinander.

- Der Sensorsollte immer sauber gehalten werden. Befindet sich ein Biofilm auf der Sensorik kann dies zu Messfehlern führen.
- Ein verschmutzter Sensor sollte mit Pufferlösung gereinigt werden.
- Wenn möglich, sollten mechanische Einwirkungen auf die Glasmembran vermieden werden.
- Bei hartnäckigen Verschmutzungen kann vorsichtig eine sehr weiche Bürste oder ein weicher Schwamm eingesetzt werden.
- Bei festeren Ablagerungen kann der Sensor in eine verdünnte HCI-Lösung oder eine Base eingetaucht werden. Im
 Falle von organischen Ablagerungen kann auch Pepsin verwendet werden.

HINWEIS

Spülen Sie den Sensor und die Sensorik nach einer Reinigung immer sorgfältig mit destilliertem Wasser ab.

Wenn der Sensor außer Betrieb genommen wird, sollte er gereinigt eingelagert werden. Die Schutzkappe muss mit einer 3 molaren KCI-Lösung gefüllt sein.

6.2 Wartung und Prüfung

HINWFIS

Vermeiden Sie es, die Sensorik zu berühren, da diese beschädigt werden könnte. Sollte das der Fall sein, kann die Funktionalität des Sensors nicht mehr gewährleistet werden.

Die durchschnittliche Lebensdauer eines TpH Sensors ist etwa 1 Jahr. Sollten Schwierigkeiten bei der Kalibrierung auftreten, so muss der Sensor wahrscheinlich ersetzt werden.

6.2.1 Temperatur Kalibrierung

Da der pH-Wert temperaturabhängig ist, wird empfohlen, die Temperatur der Pufferlösung vor der pH-Kalibrierung mit einem präzisen Referenzthermometer zu prüfen. Falls die gemessenen Temperaturen deutlich mehr als 1 °C voneinander abweichen, kann eine Kalibrierung des Temperaturfühlers im Sensor notwendig sein.

- Stellen Sie den Controller unter Optionen in den "Wartungsmodus" / "Servicemodus".
- 2. Wählen Sie den TpH Sensor unter "Sensoren" und dem entsprechenden Anschluss (COM-Port) aus.
- Bedienen Sie die Schaltfläche "Kalibrieren" und wählen Sie die Temperatur.
- 4. Der folgende Kalibrierassistent wird Sie durch die weiteren Schritte leiten:
 - Geben Sie die gemessene Temperatur (Referenz-Thermometer) als Sollwert ein und drücken Sie die Schaltfläche "weiter".
 - Lösen Sie dann eine Messung aus, indem Sie die Schaltfläche "Messung" bedienen.
 - Warten Sie bis die Schaltfläche "weiter" aktiv ist und bedienen Sie diese.
- Am Ende werden Sie gefragt, ob Sie die Kalibrierung speichern möchten. Durch die Bedienung der Schaltfläche "weiter" wird die neue Kalibrierung im Sensor gespeichert, mit "Abbruch" wird die vorherige Kalibrierung wiederhergestellt.

6.2.2 Austausch des Sensors

HINWEIS

Wenn der Sensor ausgetauscht wird, müssen die Controller-Einstellungen für den neuen Sensor neu konfiguriert werden.

- Falls Sie Ihren Sensor gegen einen neuen Sensor austauschen müssen, sollten Sie Ihre TriBox 3 in den Wartungsmodus setzen: "Optionen" → "Wartungsmodus".
- Entfernen Sie den Sensor aus der FlowCell / aus dem Rohr. An dieser Stelle sollten Sie auch überprüfen, ob die O-Ringe noch einwandfrei sind. Wechseln Sie die O-Ringe ggf. aus.
- 3. Konfiguration des neuen Sensors:

Schließen Sie den neuen Sensor an die TriBox3 an. Drücken Sie "Suche Sensoren". Nach kurzer Zeit sollte die TriBox3 den Sensor erkannt haben.

Anzeige:

"Display" \rightarrow Auswahl des Fensters \rightarrow wählen Sie die zu verändernden Fenster für den TpH aus \rightarrow "Aktueller Wert" \rightarrow Auswahl des Messwertes, der angezeigt werden soll.

Automatische Messungen:

Wählen Sie im "Sensor" Menü den TpH Sensor aus (blaues Feld).

Wählen sie "Automatische Messungen" \rightarrow "Messautomatik" oder "Schnellstmöglich" (nach Bedarf).

Um die Automatischen Messungen einzustellen (wenn nicht der Modus "Schnellstmöglich" gewählt wurde), gehen Sie auf "Optionen" \rightarrow "Messautomatik" \rightarrow "Messraster" \rightarrow Wählen Sie den Messintervall aus dem Drop-Down Menü je nach Bedarf aus.

Modbus Adresse einstellen:

"Sensor"-Menü \rightarrow drücken Sie auf das Feld des TpH Sensors \rightarrow "Modbus Server Einstellungen" \rightarrow "Slave address" \rightarrow stellen Sie die für Ihr System benötigte Adresse ein.

Analogausgänge:

"Optionen" → "Analogausgänge" → wählen Sie den Analogausgang aus, auf dem der vorherige TpH Sensor gesetzt war → "genutzter Messwert" → wählen Sie den neuen Sensor aus dem Drop Down Menü aus → stellen Sie die Skalierung ein.

Nachbearbeitung:

Falls Sie die vorherigen Nachbearbeitungseinstellungen beibehalten wollen, können Sie dies über "Sensor" \rightarrow "pH" durchführen. Hier können sie bei Bedarf die Sensoreinstellungen verändern.

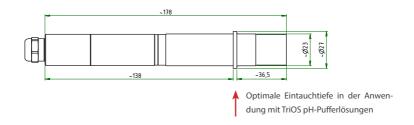
6.3 Rücksendung

Bitte beachten Sie unbedingt die Vorgehensweise für Ihre Rücksendung.

Im Falle einer Rücksendung des Sensors, wenden Sie sich bitte zunächst an den Kundendienst. Um einen reibungslosen Ablauf der Rücksendung zu gewährleisten und Fehlsendungen zu vermeiden, muss zunächst jede Rücksendung beim Kundendienst gemeldet werden. Sie erhalten im Anschluss ein nummeriertes RMA Formular, welches Sie bitte vollständig ausfüllen, prüfen und an uns zurücksenden. Bitte kleben Sie das Formular mit der Nummer gut sichtbar von außen an das Rücksendepaket oder schreiben Sie diese groß auf die Verpackung. Nur so kann Ihre Rücksendung richtig zugeordnet und angenommen werden.

Achtung! Rücksendungen ohne RMA Nummer können nicht angenommen und bearbeitet werden!

Bitte beachten Sie, dass der Sensor vor dem Versand gereinigt und desinfiziert werden muss. Um die Ware unbeschädigt zu versenden, verwenden Sie die Originalverpackung. Sollte diese nicht vorhanden sein, stellen Sie sicher, dass ein sicherer Transport gewährleistet ist und die Sensoren durch ausreichend Packmaterial gesichert sind.


7 Technische Daten

7.1 Technische Spezifikationen

		net to 1
Messtechnik		pH-Elektrode
Messprinzip		Potentiometrie
Parameter		pH-Wert, Temperatur
Messbereich	рН	014 pH
	Temperatur	0+65 °C
Auflösung	рН	0,01 pH
Autosung	Temperatur	0,1 °C
Messgenauigkeit	рН	± 0,06 pH
Messgenadigkert	Temperatur	± 0,5 °C
	pH1	± 0,05 pH
Eigenabweichung	pH7	± 0,05 pH
	pH13	± 0,35 pH
Linearitätsmessabwe	ichung	± 0,1 pH
Wiederholbarkeit	pH1	± 0,1 pH
	pH7	± 0,05 pH
	pH13	± 0,1 pH
Ausgangssignal-	pH7	± 0,025 pH
schwankung	pH4	± 0,05 pH
Aufwärmzeit		< 5 min
Drift	Kurzzeitdrift 24 h	≤ 0,03 pH
	Langzeitdrift 1 Woche	≤ 0,05 pH
	T10 ansteigend	< 2 s
10-%-Zeit und	T10 abfallend	< 2 s
90-%-Zeit	T90 ansteigend	≤ 5 s
	T90 abfallend	≤ 5 s
Temperaturkompensation		Pt1000
Messintervall		2 s
Gehäusematerial		PPS / PET / NBR
Abmessungen (L x Ø)		~ 180 x 27 mm
Gewicht		110 g
Interface		RS-485, Modbus RTU
Leistungsaufnahme		0,2 W

Stromversorgung		1224 VDC (± 10 %)
Anschluss		8-pol M12-Stecker
Sensor Kabel		2 m und 10 m
Betreuungsaufwand		≤ 0,5 h/Monat typisch
Kalibrier-/Wartungsintervall		4 Wochen typisch
Systemkompatibilität		Modbus RTU
Garantie		1 Jahr (EU: 2 Jahre) auf Elektronik; Verschleißteile sind von der Garantie ausgenommen
Max. Druck	mit festem Kabel	3 bar
Max. Druck	in Durchflusseinheit	1 bar, 24 L/min
Schutzart		IP68
Probentemperatur		+2+40 °C
Umgebungstemperatur		-5+55 °C
Lagertemperatur		0+80 °C
Anströmgeschwindigkeit		03 m/Sekunde

7.2 Äußere Abmessungen

8 Zubehör

8.1 TriBox 3

Digitale 4-Kanal Anzeige und Kontrolleinheit mit integriertem Magnetventil zur Druckluftsteuerung

TriBox3 ist ein Mess- und Regelsystem für alle TriOS-Sensoren. Das Gerät bietet 4 Sensorkanäle mit wählbarer RS-232oder RS-485-Funktion. Neben Modbus-RTU sind verschiedene andere Protokolle verfügbar. Ein eingebautes Ventil
ermöglicht die Verwendung einer Druckluftreinigung für
die Sensoren. Daneben bietet die TriBox3 die Netzwerke
TCP/IP und WLAN, USB-Anschluss und 6 analoge Ausgänge
(4...20 mA). Ein integriertes Relais kann benutzt werden, um
Alarme auszulösen oder externe Geräte anzusteuern. Ein niedriger Stromverbrauch, ein robustes Aluminiumgehäuse und eine
Reihe von Schnittstellen machen es für alle Anwendungen in
der Umweltüberwachung, Trinkwasser, Abwasserbehandlungsanlagen und vielen anderen Bereichen geeignet.

Ab Firmware-Version 1.4.11.

8.2 TriBox mini

Digitaler 2-Kanal Controller

Mini Controller mit zwei digitalen und seriellen Sensor Kanälen und zwei 4...20mA-Ausgängen. Alle gespeicherten Messwerte und Diagnosedaten können über einen integrierten Webbrowser ausgelesen werden.

Ab Firmware-Version 1.2.0.

8.3 Durchflusszelle für eCHEM Sensoren

Die eigens für die eCHEM-Serie entwickelte Durchflusszelle wird für Bypass-Installationen der von uns hergestellten eCHEM-Sensoren verwendet. Das Messmedium wird über einen Zufluss durch die Zelle geleitet und ermöglicht somit eine reagenzienfreie Messung außerhalb des Messmediums. Die Durchflusszellen basieren auf einem modularen System, welches sich durch weitere Module erweitern lässt.

8.4 pH-Pufferset

Das pH-Pufferset beinhaltet je 6 pH4- und pH7-Flüssigstandards, die der Kalibrierung der TriOS pH-Sensoren TpH dienen. Somit kann eine zuverlässige Detektion des pH-Wertes garantiert werden. Zusammen mit dem Sensorhalter und der FlowCell ermöglicht es Ihnen auch vor Ort eine schnelle und präzise Überprüfung unserer TriOS pH-Sensoren durchzuführen.

pH-Werte der TriOS Pufferlösung in Abhängigkeit zur Temperatur.

pH 4.01

°C	°F	рН
0	32	4.01
5	41	4.00
10	50	4.00
15	59	4.00
20	68	4.00
25	77	4.01
30	86	4.02
35	95	4.03
40	104	4.04
45	113	4.05
50	122	4.06
55	131	4.08
60	140	4.09
65	149	4.11
70	158	4.12
75	167	4.14
80	176	4.16
85	185	4.17
90	194	4.19
95	203	4.20

pH 7.01

°C	°F	рН
0	32	7.13
5	41	7.10
10	50	7.07
15	59	7.05
20	68	7.03
25	77	7.01
30	86	7.00
35	95	6.99
40	104	6.98
45	113	6.98
50	122	6.98
55	131	6.98
60	140	6.98
65	149	6.99
70	158	6.99
75	167	7.00
80	176	7.01
85	185	7.02
90	194	7.03
95	203	7.04

9 Garantie

Die Garantie gilt nur für die Elektronik des Gerätes. Die Garantiedauer unserer Geräte beträgt innerhalb der EU 2 Jahre ab Datum der Rechnung. Außerhalb der EU beträgt sie 1 Jahr. Ausgeschlossen von der Garantie sind alle Verschleißteile.

Die Garantie ist an folgende Bedingungen geknüpft:

- Das Gerät und alle Zubehörteile müssen wie im entsprechenden Handbuch beschrieben installiert und nach den Spezifikationen betrieben werden.
- Schäden durch den Kontakt mit aggressiven und materialschädigenden Stoffen, Flüssigkeiten oder Gasen sowie Transportschäden, sind nicht durch die Garantie abgedeckt.
- Schäden durch unsachgemäße Behandlung und Benutzung des Geräts sind nicht durch die Garantie abgedeckt.
- Schäden, die durch Modifikation oder unprofessionelle Anbringung von Zubehörteilen, die durch den Kunden verursacht werden, sind nicht von der Garantie abgedeckt.

HINWEIS

Das Öffnen des Sensors führt zum Garantieverlust!

10 Kundendienst

Sollten Sie ein Problem mit dem Sensor haben, wenden Sie sich bitte an den TriOS Kundendienst.

Kontakt technischer Support:

support@trios.de

Telefon: +49 (0) 4402 69670 - 0

Fax: +49 (0) 4402 69670 - 20

Um eine schnelle Hilfe zu ermöglichen, senden Sie uns bitte per E-Mail die Sensor-ID-Nummer.

11 Kontakt

Wir arbeiten permanent an der Verbesserung unserer Geräte. Bitte besuchen Sie unsere Webseite, um Neuigkeiten zu erfahren. Wenn Sie einen Fehler in einem unserer Geräte oder Programme gefunden haben oder zusätzliche Funktionen wünschen, melden Sie sich bitte bei uns:

Kundendienst: support@trios.de Allgemeine Fragen/Verkauf: sales@trios.de Webseite: www.trios.de

TriOS Mess- und Datentechnik GmbH

Bürgermeister-Brötje-Str. 25

26180 Rastede

Germany

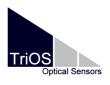
Telefon +49 (0) 4402 69670 - 0 Fax +49 (0) 4402 69670 - 20

12 Stichwortverzeichnis

A	
Abfall	3
Abmessungen	17
Anforderungen an den Anwender	4
Aufbau des Sensors	7
В	
Bedienungsanforderungen	4
Bestimmungsgemäße Verwendung	4
Biologische Sicherheit	3
Bypass Installation	9
С	
CE-Zertifizierung	24
D	
Durchflusszelle	9
E	
Elektrische Installation	8
Elektromagnetische Wellen	3
Entsorgung	5
F	
G	
Garantie	20
Gesundheits- und Sicherheitshinweise	

H	
I	
J	
К	
Kalibrierung	11
Kontakt	21
Kundendienst	20
L	
Lagerung	10
Lieferumfang	7
М	
M12 Industriestecker	8
Messeigenschaften	13
Modbus	25
N	
Normalbetrieb	9

p	
Produktidentifizierung	6
Q	
R	
Reagenzien	3
Reinigung	14
RMA Nummer	15
Rücksendung	15
Rohrinstallation	10
S	
Sicherheitshinweise	3
Spezifikationen	
т	
Technische Spezifikationen	16
Temperaturkompensation	13
Typenschild	


0

U	
Urheberrechte	2
V	
w	
Warnhinweise	4
Wartung	14
х	
Y	
z	
Zertifikate & Zulassungen	5
Zubehör	18

Anhang

CE Konformitätserklärung

Hersteller/Manufacturer/Fabricant:

TriOS Mess- und Datentechnik GmbH Bürgermeister-Brötje-Str. 25 D- 26180 Rastede

Konformitätserklärung Declaration of Conformity Déclaration de Conformité

Die TriOS GmbH bescheinigt die Konformität für das Produkt The TriOS GmbH herewith declares conformity of the product TriOS GmbH déclare la conformité du produit

Bezeichnung Product name Designation TpH

Typ / Type / Type:

Art. Nr. 80S1000x0

Mit den folgenden Bestimmungen With applicable regulations Avec les directives suivantes

2014/30/EU EMV-Richtlinie 2011/65/EU RoHS-Richtlinie

Angewendete harmonisierte Normen Harmonized standards applied Normes harmonisées utilisées EN 61326-1:2013 EN 55011:2009 + A1:2010 EN 61010-1:2010 EN 50581:2012

Datum / Date / Date

Unterschrift / Signature / Signatur

02.05.2018

R. Heuermann

D05-068yy201805

Modbus RTU

Serielle Schnittstelle

Im Auslieferzustand ist die serielle Schnittstelle mit folgenden Einstellungen konfiguriert:

Baudrate: 9600 bps

Datenbits: 8

Stopbits: 1

· Parity: none

Datentypen

Name	Register	Format
Bool	1	Falsch: 0x0000, Wahr: 0xFF00
Uint8	1	8 Bit positive Ganzzahl. Wertebereich: 0x0000 - 0x00FF
Uint16	1	16 Bit positive Ganzzahl. Wertebereich: 0x0000 - 0xFFFF
Uint32	2	32 Bit positive Ganzzahl. Wertebereich: 0x00000000 - 0xFFFFFFF
Float	2	IEEE 754 32 Bit Fließkommazahl
Char[n]	$\left[\frac{n}{2}\right]$	Null terminierte ASCII Zeichenkette aus n Zeichen
Uint16[n]	n	Feld aus n Uint16-Werten
Float[n]	2n	Feld aus n Float-Werten

Funktionen

Der Sensor unterstützt folgende Modbus Funktionen:

Name	Code	Beschreibung / Verwendung
Read multiple registers	0x03	Auslesen der Seriennummer, Konfiguration, Kalibrierung und Messdaten.
Write multiple registers	0x10	Schreiben der Konfiguration und Kalibrierung.
Write single register	0x06	Schreiben der Konfiguration und Kalibrierung.
Report slave ID	0x11	Auslesen der Seriennummer und Firmwareversion.

Standard Modbus Server Adresse

Im Auslieferzustand ist der Sensor auf die Adresse 20 (0x14) eingestellt.

Read / Write multiple registers (0x03 / 0x10)

In den Registern liegen folgende Werte:

Name	R/W	Addresse	Datentyp	Beschreibung			
Modbus slave ID	RW	0	Uint16	Die Modbus Server Adresse des Sensors.			
Measurement timeout	R	1	Uint16	Die verbleibende Zeit in [10-1 s] der aktiven Messung.			
Serial Setting - Baudrate	RW	2	Uint16	 0x0000 9600 Baud 0x0001: 19200 Baud 0x0002: 38400 Baud 0x0003: 56700 Baud 			
Serial Setting - Parity	RW	3	Uint16	 0x0000: None 0x0001: Odd 0x0002: Even 			
Serial Setting - Stopbits	RW	4	Uint16	0x0001: 1 Stopbit0x0002: 2 Stopbits			
Device serial number	R	10	Char[20]	Die Seriennummer des Sensors.			
Firmware version	R	15	Char[20]	Die installierte Firmwareversion des Sensors.			
System date and time	RW	107	Uint32	Die aktuelle Uhrzeit in Sekunden seit dem 01.01.1970. (Interner Zähler mit $\pm 0,9\%$ Genauigkeit @ 8.00MHz)			
Device description	RW	109	Char[64]	Sensorbeschreibung (z.B.: "Zulauf Süd").			
Index for Moving Average / Offset / Scaling	RW	400	Uint16	Der Index des Parameters für die folgenden Offset- und Skalierungseinstellungen. Der Index richtet sich nach der Parameterliste in dieser Beschreibung ab Register 1000: 0x0000: pH 0x0001: Temperature			
Moving average	RW	401	Uint16	Die Anzahl Messungen über die ein gleitendes Mittel berechnet wird. Wertebereich: 1 – 25 Auslieferzustand: 10			
Offset	RW	402	Float	Parameter Offset. Formel: scaled = (raw – offset) * scaling			
Scaling	RW	404	Float	Parameter Skalierungsfaktor. Formel: scaled = (raw – offset) * scaling			
рН	R	1000	Float	Der pH Wert des Mediums (Originalwert).			
Temperature	R	1002	Float	Die Temperatur des Mediums in °C (Originalwert).			
SQI	R	1004	Float	Sensorqualitätsindex.			
pH scaled	R	1500	Float	Der pH Wert des Mediums (kundenskaliert).			
Temperature scaled	R	1502	Float	Die Temperatur des Mediums in °C (kundenskaliert).			

FSM Control	RW	5000	Uint16	FSM Kontrollregister (Kalibrierung).
FSM Parameter	RW	5001	Uint16	FSM Parameterregister (Kalibrierung). Enthält Parameterindex und Kalibriermethode. • 0x0001: pH • 0x0103: Temperatur
FSM Status	R	5002	Uint16	FSM Zustandsregister (Kalibrierung).
Permanent errors	R	5100	Uint16	Permanente Fehler (Bitfeld).
Permanent warnings	R	5101	Uint16	Permanente Warnungen (Bitfeld).
Temporary errors	R	5102	Uint16	Temporäre Fehler (Bitfeld).
Temporary warnings	R	5103	Uint16	Temporäre Warnungen (Bitfeld).
Calibration Control	RW	6000	Uint16	Kalibrierkontrollregister. Zur vollständigen Wiederherstellung der Kalibrierung (pH und Temperatur): 0x0001: Werkskalibrierung 0x0002: Letzte Kalibrierung
Factory calibration - Parameter	RW	6001	Uint16	Parameterindex der folgenden Kalibrierdaten (Werkskalibrierung): • 0x0000: pH • 0x0001: Temperatur
Factory calibration - Offset	RW	6002	Float	Offset der Werkskalibrierung zum ausgewählten Parameter.
Factory calibration – Scaling	RW	6004	Float	Skalierungsfaktor der Werkskalibrierung zum ausgewählten Parameter.
Factory calibration – Square	RW	6006	Float	Quadratischer Koeffizient der Werkskalibrierung zum ausgewählten Parameter. Wird nicht verwendet, immer 0.
Factory calibration – Timestamp	RW	6008	Uint32	Zeitpunkt der Werkskalibrierung.
Active calibration - Parameter	RW	6010	Uint16	Parameterindex der folgenden Kalibrierdaten (aktive Kalibrierung): Ox0000: pH Ox0001: Temperatur
Active calibration – Offset	RW	6011	Float	Offset der aktiven Kalibrierung zum ausgewählten Parameter.
Active calibration – Scaling	RW	6013	Float	Skalierungsfaktor der aktiven Kalibrierung zum ausgewählten Parameter.
Active calibration – Square	RW	6015	Float	Quadratischer Koeffizient der aktiven Kalibrierung zum ausgewählten Parameter. Wird nicht verwendet, immer 0.
Active calibration – Timestamp	RW	6017	Uint32	Zeitpunkt der aktiven Kalibrierung.

Last calibration - Parameter	RW	6019	Uint16	Parameterindex der folgenden Kalibrierdaten (letzte Kalibrierung): Ox0000: pH Ox0001: Temperature
Last calibration – Offset	RW	6020	Float	Offset der letzten Kalibrierung zum ausgewählten Parameter.
Last calibration – Scaling	RW	6022	Float	Skalierungsfaktor der letzten Kalibrierung zum ausgewählten Parameter.
Last calibration – Square	RW	6024	Float	Quadratischer Koeffizient der letzten Kalibrierung zum ausgewählten Parameter. Wird nicht verwendet, immer 0.
Last calibration – Timestamp	RW	6026	Uint32	Zeitpunkt der letzten Kalibrierung.

Fehler und Warnungen

Permanente Fehler deuten auf einen Defekt des Sensors hin.

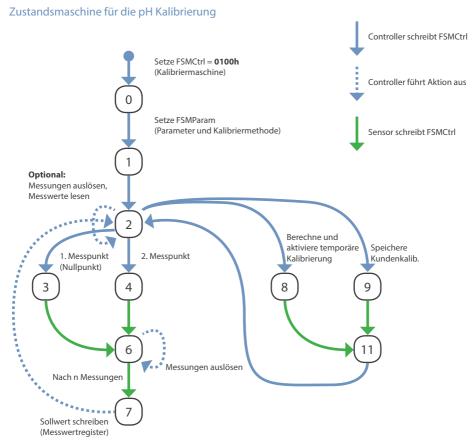
Beschreibung	Bitmaske
Allgemeiner Fehler	0x0001
ADC Überschreitung oberes Limit	0x0002
ADC Unterschreitung unteres Limit	0x0004

Permanente Warnungen

Beschreibung	Bitmaske
n/a	n/a

Temporäre Fehler geben Hinweise auf die Ursache fragwürdiger Messwerte (SQI), oder zu Problemen bei der Kalibrierung.

Beschreibung	Bitmaske
ADC Fehler	0x0001
ADC Überschreitung oberes Limit	0x0002
ADC Unterschreitung unteres Limit	0x0004
FSM Ungültiger Zustand	0x0010
FSM Ungültige Transition	0x0020
FSM Unzureichende Authentifizierung	0x0040
FSM Ungültiger Parameterindex	0x0100
FM Ungültige Kalibriermethode	0x0200


Temporäre Warnungen geben Hinweise auf die Ursache fragwürdiger Messwerte (SQI).

Beschreibung	Bitmaske
Temperatur außerhalb 0 65°C	0x0002
pH Wert außerhalb 0,5 12,5	0x0008
Referenzspannung außerhalb 0,3 1,17V	0x0010

Report Server ID (0x11)

Liefert die Sensorbezeichnung, die Seriennummer und Firmwareversionsnummer jeweils als Null terminierte ASCII Zeichenkette.

7ustandsmaschinen Nummer

Die Kalibriermaschine hat die Nummer 1.

Zustände

0: Aktivieren der Zustandsmaschine

Die Zustandsmaschine wird aktiviert; der Sensor verlässt den normalen Operationsmodus.

1: Validierung Parameter und Kalibriermethode

Über das Parameterregister FSMParam muss die Kalibriermethode (im Low Byte) und der zu kalibrierende Parameter (im High Byte) ausgewählt werden. Danach wird durch den Wechsel in Zustand 1 die Zustandsmaschine für diesen Parameter und diese Kalibriermethode initialisiert.

Ist der gewählte Kalibriervorgang möglich wechselt der Sensor in Zustand 2 und deaktiviert die aktuellen Kalibrierkoeffizienten für den gewählten Parameter.

Andernfalls wird im Zustand 1 verweilt, wobei durch Auslesen der Fehlerregister der Grund hierfür ermittelt werden kann.

2: Ruhezustand

Die Kalibriermaschine wurde erfolgreich aktiviert, bzw. die letzte Aktion erfolgreich abgeschlossen. Der Sensor wartet nun auf weitere Befehle.

3 und 4: Messungen

Seitens der Kontrolleinheit können nun die für diese Kalibriermethode erforderlichen Messungen durch den Zustandswechsel in die Zustände 3 oder 4 gestartet werden. Hierbei ist unabhängig von der Kalibriermethode der Zustand 3 immer für den ersten Messpunkt usw.

6: Messung wird durchgeführt

Nachdem die Kontrolleinheit dem Sensor durch den Zustandswechsel in den Zustand 3 oder 4 mitgeteilt hat, die Messung zu starten, wechselt der Sensor für die Dauer der Messungen in den Zustand 6. In dieser Phase sollte die Kontrolleinheit laufend Messungen auslösen und die Messergebnisse auslesen. Sobald der Sensor genügend viele Messwerte gesammelt hat, wechselt er in den Zustand 7 und erwartet die Übergabe des Sollwertes.

7: Erfassung des Sollwertes

Die Kontrolleinheit schreibt den Sollwert in das Messwertregister des kalibrierten Parameters. Dieses ist dasselbe Register, aus dem auch die Messwerte des Parameters ausgelesen werden. Wird der Sollwert vom Sensor akzeptiert, quittiert er dieses mit einem Wechsel zurück in den Zustand 2. Andernfalls verweilt er weiter in Zustand 7.

8: Berechnung der Koeffizienten

Wurden alle benötigten Messungen aufgenommen und die Sollwerte hinterlegt, kann der Sensor durch den Wechsel in den Zustand 8 dazu aufgefordert werden, eine neue Kalibrierung zu berechnen. Diese neue Kalibrierung wird dann temporär aktiviert, sodass die nun ausgelesenen Messwerte sie verwenden. Diese Kalibrierung ist allerdings noch nicht gespeichert und geht verloren, falls man die Kalibriermaschine nun verlässt.

Nach erfolgreicher Berechnung wechselt der Sensor in Zustand 11 (siehe unten). Kann der Sensor keine Kalibrierung berechnen, verharrt der Sensor in Zustand 8.

9: Speichern der Kundenkalibrierung

Durch Wechsel in den Zustand 9 wird die Kundenkalibrierung gespeichert. D.h. die vorherigen Kalibrierdaten werden als letzte Kalibrierung gekennzeichnet und die neuen Kalibrierdaten als aktive Kalibrierung markiert. Sobald die Kundenkalibrierung gespeichert wurde, bleiben die während dieser Kalibrierung ermittelten Parameter auch nach dem Verlassen der Kalibriermaschine aktiv.

Nach erfolgreicher Speicherung wechselt der Sensor in Zustand 11 (siehe unten). Im Fehlerfall verharrt der Sensor in Zustand 9.

11: Erfolgreiche Aktion

Nach erfolgreicher Berechnung oder Speicherung wechselt der Sensor in den Zustand 11 und wartet auf eine Quittierung durch die Kontrolleinheit. Diese muss dann dem Sensor einen Wechsel in den Zustand 2 übermitteln.

Beenden / Abbruch

Die Zustandsmaschine kann durch das Setzen des Zustandskontrollregisters auf den Wert 0 jederzeit beendet und so zurück in den normalen Operationsmodus gewechselt werden. Wurde dabei die Kalibrierung noch nicht abgeschlossen und die Koeffizienten nicht gespeichert, werden die ursprünglichen Koeffizienten wiederhergestellt.

Fehlerzustände

Tritt bei der Kalibrierung ein Fehler auf und der Sensor verharrt in einem der oben erwähnten Fehlerzustände, muss die Kalibriermaschine auf jeden Fall beendet und bei Bedarf neu gestartet werden. Eine Fehlererholung innerhalb der Kalibriermaschine findet nicht statt

Zustandsparameterregister

Das Zustandsparameterregister ist in zwei Teile geteilt:

FSMParam				
High Byte	Low Byte			
Parameter Index	Kalibriermethode			

Der **Parameter Index** bestimmt den zu kalibrierenden Parameter. Der Index richtet sich nach der Parameterliste, wie sie im Messwertregisterbereich abzulesen ist.

Die Kalibriermethode wird über einen folgender Werte bestimmt:

Kalibriermethode	Bedeutung	Zustände
0x00 Keine Kalibrierung (Reset FSM)		_
0x01	1 Lineare (2 Punkt-) Kalibrierung (Offset, Scaling)	

pH Kalibrierung

Register		
5000	FSM Control	
5001	FSM Parameter	1 = pH
	High Byte	Low Byte
5002	FSM on = 1 immer	FSM Status

Anforderungen und Notizen	Funktionalität	Funktions- code	Register	Wert	Länge	FSM Status	Тур	Resultat
Schritt 1	pH Kalibrierung							
Anforderungen:	Aktiviere Kalibrierungsmodus pH							
Temperatur ist kalibriert (siehe S. 28)	Aktiviere Kalibrierungsmodus	0x06	5000	0x0100				
Sensor in Normalbetrieb (LED grün)	Aktiviere pH Kalibrierung	0x06	5001	0x0001				
	Starte Kalibrierung	0x06	5000	0x0101				
	Warte bis Sensor LED blau und FSM Status 2 wird	0x03	5002		1	2	Integer	LED wird blau
Schritt 2								
Anforderungen:	Kalibriere pH 7							
FSM Status 2	Starte pH 7 Kalibrierung	0x06	5000	0x0103				
pH7 Puffer einfügen								
Stabile Messwerte (abfragen bis stabil)	Register FSM Status regelmäßig abfragen bis es auf 7 steht (kann eine Weile dauern)	0x03	5002		1	7	Integer	
	Schreibe spezifizierten Wert der Standardlösung	0x10	1000	IEEE 754 Float	2		IEEE 754 Float	
Notiz:								
Nutze 40E0 40E0 (pH7) wenn keine Floats geschrieben werden können	Register FSM Status regelmäßig abfragen bis es auf 2 steht	0x03	5002		1	2	Integer	
Schritt 3								
Anforderungen:	Kalibriere pH 10 oder 4							
FSM Status 2	Starte pH 10 oder pH4 Kali- brierung	0x06	5000	0x0104				
pH10 oder pH4 Puffer einfügen								
Stabile Messwerte (abfragen bis stabil)	Register FSM Status regelmäßig abfragen bis es auf 7 steht	0x03	5002		1	7	Integer	

Anforderungen und Notizen	Funktionalität	Funktions- code	Register	Wert	Länge	FSM Status	Тур	Resultat
	Schreibe spezifizierten Wert der Standardlösung	0x10	1000	754 Float	2		754 Float	
Notiz:								
Nutze 4120 4120 (ph 10) oder 4080 4080 (pH 4) wenn keine Floats geschrieben werden können	Register FSM Status regelmäßig abfragen bis es auf 2 steht	0x03	5002		1	2	Integer	
Schritt 4								
Anforderungen:	Kalibrierung anwenden und prüfen							
Kalibrierung war erfolgreich	Wende Kalibrierung an und warte bis FSM Status 11 ist	0x06	5000	0x0108				
FSM Status 2	Register FSM Status regelmäßig abfragen bis es auf 11 steht	0x03	5002		1	11	Integer	
	FSM Status wieder auf 2 setzen	0x06	5000	0x0102				
	Register FSM Status regelmäßig abfragen bis es auf 2 steht	0x03	5002		1	2	Integer	
Notiz:								
Messwerte abfragen um zu prüfen ,ob Werte zufriedenstellend sind	Frage pH-Daten ab	0x03	1000		2		IEEE 754 Float	
Die Kalibrierung wurde noch nicht gespeichert								
Wenn die Kalibrierung zwischen Schritt 1 und 6 abgebrochen wird oder das System ausge- schaltet wird, geht die Kalibrierung verloren								
Schritt 5								
Anforderungen:	Speichere Kalibrierung							
Kalibrierungsprozess war erfolgreich	Speichere Kalibrierung und warte bis FSM Status 11 ist	0x06	5000	0x0109				
	Register FSM Status regelmäßig abfragen bis es auf 11 steht	0x03	5002		1	11	Integer	
	FSM Status wieder auf 2 setzen	0x06	5000	0x0102				
	Register FSM Status regelmäßig abfragen bis es auf 2 steht	0x03	5002		1	2	Integer	
	Kalibrierung ist gespeichert							

Anforderungen und Notizen	Funktionalität	Funktions- code	Register	Wert	Länge	FSM Status	Тур	Resultat
Schritt 6								
Notiz:	Kalibrierung verlassen	0x06	5000	0x0000				
Wenn zwischen Schritt 1 und 6, geht die Kalibrie- rung verloren	Register FSM Status regelmäßig abfragen bis es auf 0 steht.	0x03	5002		1	0	Integer	LED wird grün

Temperaturkalibrierung

Register		
5000	FSM Control	
5001	FSM Parameter	259 = Temp
	High Byte	Low Byte
5002	FSM an = 1 immer	FSM Status

Anforderungen und Notizen	Funktionalität	Funktions- code	Register	Wert	Länge	FSM Status	Тур	Resultat
Schritt 1	Temperaturkalibrierung							
Anforderungen:	Aktiviere Kalibrierungsmodus Temperatur							
Sensor in Normalbetrieb (LED grün)	Aktiviere Kalibrierungsmodus	0x06	5000	0x0100				
	Aktiviere Temperaturkalibrie- rung	0x06	5001	0x0103				
	Starte Kalibrierung	0x06	5000	0x0101				
	Warte bis Sensor LED blau und FSM Status 2 wird	0x03	5002		1	2	Integer	LED wird blau
Schritt 2								
Anforderungen:	Temperatur kalibrieren							
FSM Status 2	Starte Kalibrierung Temperatur	0x06	5000	0x0103				
Messe Referenztem- peratur								
Stabile Messwerte (abfragen bis stabil)	Register FSM Status regelmäßig abfragen bis es auf 7 steht (kann eine Weile dauern)	0x03	5002		1	7	Integer	
	Schreibe Referenztempera- turwert	0x10	1002	IEEE 754 Float	2		IEEE 754 Float	
Notiz:	Register FSM Status regelmäßig abfragen bis es auf 2 steht	0x03	5002		1	2	Integer	

Schritt 3								
Anforderungen:	Kalibrierung anwenden und prüfen							
Kalibrierung war erfolgreich	Wende Kalibrierung an und warte bis FSM Status 11 ist	0x06	5000	0x0108				
FSM Status 2	Register FSM Status regelmä- ßig abfragen bis es auf 11 steht	0x03	5002		1	11	Integer	
Anforderungen und Notizen	Funktionalität	Funktions- code	Register	Wert	Länge	FSM Status	Тур	Resultat
	FSM Status wieder auf 2 setzen	0x06	5000	0x0102				
	Register FSM Status regelmä- ßig abfragen bis es auf 2 steht	0x03	5002		1	2	Integer	
Notiz:								
Messwerte abfragen um zu prüfen ,ob Werte zufriedenstellend sind	Frage Temperaturdaten ab	0x03	1002		2		IEEE 754 Float	
Die Kalibrierung wurde noch nicht gespeichert								
Wenn die Kalibrierung zwischen Schritt 1 und 6 abgebrochen wird oder das System ausge- schaltet wird, geht die Kalibrierung verloren								
Schritt 4								
Anforderungen:	Speichere Kalibrierung							
Kalibrierung war erfolgreich	Speichere Kalibrierung und warte bis FSM Status 11 ist	0x06	5000	0x0109				
	Register FSM Status regelmä- ßig abfragen bis es auf 11 steht	0x03	5002		1	11	Integer	
	FSM Status wieder auf 2 setzen	0x06	5000	0x0102				
	Register FSM Status regelmä- ßig abfragen bis es auf 2 steht	0x03	5002		1	2	Integer	
	Kalibrierung ist gespeichert							
Schritt 5								
Notiz:	Kalibrierung verlassen	0x06	5000	0x0000				
Wenn zwischen Schritt 1 und 6, geht die Kalibrie- rung verloren	Register FSM Status regelmäßig abfragen bis es auf 0 steht.	0x03	5002		1	0	Integer	LED wird grün